Derived Schemes

Cailan Li October 20th, 2020

1 Finite Presentation and Open Immersions

Definition 1.1. A homomorphism of SCR $\mathbb{R}^{\bullet} \to S^{\bullet}$ is locally of finite presentation if S^{\bullet} is a compact object of SCR_{\mathbb{R}^{\bullet}}, given any filtered colimit $\{B_i\}_{i \in J}$ in SCR_{\mathbb{R}^{\bullet}} we have

$$\operatorname{Map}_{\operatorname{SCR}_{B^{\bullet}}}(S^{\bullet}, \lim B_{i}) \cong \lim \operatorname{Map}_{\operatorname{SCR}_{B^{\bullet}}}(S^{\bullet}, B_{i})$$

Lemma 1.2. Let R_0 be a discrete ring. Then the compact objects in R_0 – alg are precisely the finitely presented R_0 – algebras.

Proof. Suppose $S = R_0[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$ is a finitely presented R_0 -algebra. We first show that the natural map

 $\Phi: \lim_{N \to \infty} \operatorname{Hom}_{R_0}(S, B_i) \to \operatorname{Hom}_{R_0}(S, \lim_{N \to \infty} B_i)$

is surjective. Aka given f on the RHS we need to show f factors through one of the factors B_i . Because our colimit is filtered, and we have finitely many generators, we can find a B_g for which $\{f(x_i)\}_{i=1}^n$ all live in. Because we have finitely many relations, we can find a further B_r for which $f_i(f(x_1), \ldots, f(x_n)) = 0$ and thus we have an R_0 algebra map $S \to B_r$ as desired. Injectivity quickly follows from being finitely generated and therefore Φ is an isomorphism.

In the reverse direction, note that any R_0 -algebra S is the colimit over it's finitely generated R_0 -subalgebras S_i and this colimit is filtered. Thus we see that if S is compact,

$$\operatorname{Hom}_{R_0}(S,S) = \operatorname{Hom}_{R_0}(S,\lim S_i) = \lim \operatorname{Hom}_{R_0}(S,S_i)$$

Taking the identity map on the LHS, we get a splitting map, aka $\pi : S \to S_k$ s.t. $S \to S_k \xrightarrow{i} S$ is id_S for some k so that $S_k = S \oplus R$ as algebras. This will imply that S is finitely generated as writing the generators $x_i = x_i^s + x_i^r$ since $\pi : S_k \to S$ is an algebra homomorphism it follows that $x = \pi(x) = \pi(h(x_1, \ldots, x_n)) = h(x_1^s, \ldots, x_n^s)$. Thus we can write $S = R_0[x_1, \ldots, x_n]/I$. To show I is finitely generated write $I = \lim_{i \to I_k} I_k$ as a colimit over finitely generated $R_0[x_1, \ldots, x_n]$ submodules, aka subideals. Since colimits commute with colimits we have that

$$S = R_0[x_1, \dots, x_n]/I = \lim_{k \to \infty} R_0[x_1, \dots, x_n]/I_k$$

And now finitely presented follows by a similar argument as above.

Definition 1.3 (Open b/t affines). Let $j : \operatorname{Spec} B^{\bullet} \to \operatorname{Spec} A^{\bullet}$ be a morphism of affine derived schemes. We say that j is an open immersion if the corresponding morphism of SCR is locally of finite presentation, flat, and an epimorphism $(B^{\bullet} \bigotimes_{A^{\bullet}} B^{\bullet} \to B^{\bullet}$ is invertible) **Definition 1.4** (Open target affine). Let $j : \mathscr{U} \to \operatorname{Spec} A^{\bullet}$ be a morphism of derived stacks. We say that j is an open immersion if it is a monomorphism and there is a (fpqc) covering family $\{\mathscr{U}_{\alpha} \to \mathscr{U}\}$ which induces an effective epimorphism $\sqcup_{\alpha} \mathscr{U}_{\alpha} \to \mathscr{U}$ (i.e. covers \mathscr{U}) such that each \mathscr{U}_{α} is affine and the composite $\mathscr{U}_{\alpha} \to \operatorname{Spec} A^{\bullet}$ is an open immersion of affine derived schemes.

Remark. Let R be a discrete ring and let $\phi : R \to S$ be a ring homomorphism. Consider the cosimplicial set

$$(A_S^{\bullet})_n = S \otimes_R \ldots \otimes_R S$$

where face and degeneracy maps were defined last week. Then the Amitsur complex will be

$$0 \to R \to (S \to (A_S^{\bullet})_2 \to (A_S^{\bullet})_3 \to \ldots)$$

If ϕ is faithfully flat, then $0 \to R \to A_S^{\bullet}$ will be a resolution.

Remark. Fiber products exist in derived stacks because Sh(X) is a Grothendieck ∞ -topos (Lemma 6.2.2.7 in HTT) and therefore complete and cocomplete.

Definition 1.5. A morphism of derived stacks $\mathcal{F} \to \mathcal{G}$ is an effective epimorphism if the canonical morphism

$$\lim_{\stackrel{\longrightarrow}{n}} \check{C}(\mathcal{F}/\mathcal{G})_n \to \mathcal{G}$$

is invertible where $\check{C}(\mathcal{F}/\mathcal{G})$ is the simplicial object with

$$\check{C}(\mathcal{F}/\mathcal{G})_n = \mathcal{F} \times_{\mathcal{G}} \ldots \times_{\mathcal{G}} \mathcal{F}$$

Lemma 1.6. The notion of open with target affine $j : \mathscr{U} \to \operatorname{Spec} A^{\bullet}$ is preserved under base change by morphisms in ADS.

Proof. Given Spec $B^{\bullet} \to \operatorname{Spec} A^{\bullet}$, let $g^{-1}(\mathscr{U}) := \operatorname{Spec} B^{\bullet} \times_{\operatorname{Spec} A^{\bullet}} \mathscr{U}$, and now note we have the following cartesian diagram

We now claim that $\{g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha}\}$ gives us our desired (fpqc) covering family so that $g^{-1}(\mathscr{U}) \to$ Spec B^{\bullet} will be an open immersion. To see $\bigsqcup g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha} \to g^{-1}(\mathscr{U})$ is an effective epimorphism, first note that since geometric realization commutes with finite limits, we have that

$$\lim_{\stackrel{\longrightarrow}{n}} g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \check{C} \left(\bigsqcup \mathscr{U}_{\alpha} / \mathscr{U} \right)_n \to g^{-1}(\mathscr{U})$$
(1)

is invertible. But note by transitivity of fiber products the Cartesian diagram above also shows

$$\bigsqcup g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha} \times_{g^{-1}(\mathscr{U})} \bigsqcup g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha} = \left(\bigsqcup g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha}\right) \times_{\mathscr{U}} \mathscr{U}_{\alpha}$$

so that in fact the Cech nerve of $\bigsqcup g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha} \to g^{-1}(\mathscr{U})$ is exactly the LHS of Eq. (1) and thus is invertible. Now that each $g^{-1}(\mathscr{U}) \times_{\mathscr{U}} \mathscr{U}_{\alpha}$ is also affine again by transitivity of fiber products and therefore it suffices to show that an open immersion Spec $C^{\bullet} \to$ Spec A^{\bullet} of ADS is preserved under base change. Flatness for π_0 and epimorphism are clear, while finite presentation follows from tensor-hom adjunction. Thus, the only statement that is left to check is that given $\pi_*(A^{\bullet}) \otimes_{\pi_0(A^{\bullet})} \pi_0(C^{\bullet}) \cong \pi_*(C^{\bullet})$, we WTS

$$\pi_*(B^{\bullet}) \otimes_{\pi_0(B^{\bullet})} \pi_0(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet}) \cong \pi_*(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet})$$

But since $\pi_0(C^{\bullet})$ is flat as a $\pi_0(A^{\bullet})$ module and we see that

$$\otimes_{\pi_*(A^\bullet)} \pi_*(C^\bullet) = - \otimes_{\pi_*(A^\bullet)} \pi_*(A^\bullet) \otimes_{\pi_0(A^\bullet)} \pi_0(C^\bullet) = - \otimes_{\pi_0(A^\bullet)} \pi_0(C^\bullet)$$
(2)

and therefore $\pi_*(C^{\bullet})$ is flat as a $\pi_*(A^{\bullet})$ and thus the spectral sequence

$$E_{p,q}^2 = \operatorname{Tor}_p^{\pi_*(A^{\bullet})}(\pi_*(B^{\bullet}), \pi_*(C^{\bullet}))_q \implies \pi_{p+q}(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet})$$

degenerates after E_2 , and in fact is concentrated in the 0th column. It follows that $\pi_*(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet}) = \pi_*(B^{\bullet}) \otimes_{\pi_*(A^{\bullet})} \pi_*(C^{\bullet})$ and by degree considerations, $\pi_0(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet}) = \pi_0(B^{\bullet}) \otimes_{\pi_0(A^{\bullet})} \pi_0(C^{\bullet})$ and thus

$$\pi_*(B^{\bullet}) \otimes_{\pi_0(B^{\bullet})} \pi_0(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet}) = \pi_*(B^{\bullet}) \otimes_{\pi_0(A^{\bullet})} \pi_0(C^{\bullet}) \stackrel{Eq. (2)}{=} \pi_*(B^{\bullet} \otimes_{A^{\bullet}} C^{\bullet})$$

Definition 1.7 (Open in general). Let $j : \mathscr{U} \to \mathscr{X}$ be a morphism of derived stacks. We say j is an open immersion if for any affine derived scheme $\operatorname{Spec} R^{\bullet}$ and any morphism $\operatorname{Spec} R^{\bullet} \to \mathscr{X}$ we have that

$$\begin{array}{ccc} \operatorname{Spec}\left(R^{\bullet}\right) \times_{\mathscr{X}} \mathscr{U} \longrightarrow \mathscr{U} \\ & & & \downarrow \\ & & & \downarrow \\ & & & & \downarrow \\ & & & \operatorname{Spec}\left(R^{\bullet}\right) \longrightarrow \mathscr{X} \end{array}$$

h is an open immersion in the above sense.

Remark. Definitions are consistent because of previous lemma.

2 Derived Schemes

Definition 2.1. A Zariski cover of a derived stack \mathscr{X} is a family $\{j_{\alpha} : \mathscr{U}_{\alpha} \to X\}$ where each j_{α} is an open immersion and the induced morphism

$$\bigsqcup_{\alpha} \mathscr{U}_{\alpha} \to \mathscr{X}$$

is an effective epimorphism.

Definition 2.2. A derived stack \mathscr{X} is called a derived scheme if it admits an affine Zariski Cover $\{j_{\alpha} : \mathscr{U}_{\alpha} \to X\}$ aka each \mathscr{U}_{α} is affine.

Definition 2.3. A classical scheme X is a derived scheme where we can find an affine Zariski cover Spec $R_{\alpha} \to X$ where each R_{α} is discrete.

Definition 2.4. The inclusion $c : \operatorname{CRing} \hookrightarrow \operatorname{SCR}$ induces the inclusion $\operatorname{AS} \hookrightarrow \operatorname{ADS}$. So given a derived prestack $\mathcal{X}, \mathcal{X}_{cl}$ will be the presheaf on $\operatorname{CRing}^{op}$.

Recall we had an adjunction

 $\operatorname{Hom}_{\operatorname{ADS}}(\operatorname{Spec} c(S), \operatorname{Spec} R^{\bullet}) = \operatorname{Hom}_{\operatorname{Sch}}(\operatorname{Spec} S, \operatorname{Spec}(\pi_0(R^{\bullet})))$

But notice the LHS is just $(\operatorname{Spec} R^{\bullet})(c(S)) = \operatorname{Spec} (R^{\bullet})_{cl}(S)$ and so by Yoneda we actually have

Spec $(R^{\bullet})_{cl} \cong$ Spec $(\pi_0(R^{\bullet}))$

Lemma 2.5. Given a derived stack \mathscr{X} , the presheaf \mathscr{X}_{cl} will be a classical scheme and $\mathscr{X} \mapsto \mathscr{X}_{cl}$ is right adjoint to i: the inclusion of schemes into derived schemes.

$$\operatorname{Hom}_{\operatorname{DSch}}(i(Y), \mathscr{X}) \cong \operatorname{Hom}_{\operatorname{Sch}}(Y, \mathscr{X}_{cl})$$

Remark. The counit of the adjunction above provides a natural map

$$i(\mathscr{X}_{cl}) \to \mathscr{X}$$

This map should be thought of as the analogue of the closed immersion of classical schemes

$$Y_{red} \hookrightarrow Y$$

In other words, \mathscr{X} is an an infinitesimal thickening of \mathscr{X}_{cl} except now the thickening lives in higher homotopy.

Warning. *i* does not preserve fiber products! In fact, this is a feature, not a bug of the theory of DAG, when you have two subvarieties V, W intersecting non-transversely, $[V \cap W]$ does not give you the correct intersection number. Using DAG, $[V \cap^h W]$ will be the correct answer instead.

Note that the other adjoint $\mathscr{X} \to \mathscr{X}_{cl}$ does preserve fiber products however.

We can therefore generate a lot of examples of truly derived schemes by taking the derived fiber product of classical schemes.

Example 1. Consider the SCR $\mathbb{k} \otimes_{\mathbb{k}[x]}^{L} \mathbb{k}$ viewed as a derived scheme. Because $_{cl}$ preserves fiber products, we see that the underlying classical scheme is Spec $\mathbb{k} \otimes_{\mathbb{k}[x]} \mathbb{k}$ which topologically is a point. A very useful explicit description of this SCR can be gotten by noting that \mathbb{k} has a Koszul resolution $\Lambda(\mathbb{k}[1]) \otimes \mathbb{k}[x]$

$$(0 \to \mathbb{k}[x] \xrightarrow{1 \mapsto x} \mathbb{k}[x]) \xrightarrow{x \mapsto 0} \mathbb{k} \to 0$$

as exterior algebras (well, technically the Sullivan algebras) are exactly the cofibrants object in $cdga^{\geq 0}$ (under projective model structure) which is Quillen equivalent to SCR in characteristic 0 via monoidal Dold-Kan. Therefore we see that

$$\mathbb{k} \otimes_{\mathbb{k}[x]}^{L} \mathbb{k} = (\Lambda(\mathbb{k}[1]) \otimes \mathbb{k}[x]) \otimes_{\mathbb{k}[x]} \mathbb{k} = \Lambda(\mathbb{k}[1]) \otimes \mathbb{k}$$

2.1 Alternative Definitions

Definition 2.6. Given a topological space X, let SCR(X) be the subcategory of stacks/sheaves in [Op(X), SCR]. Then the ∞ - category dRgSp of derived ringed spaces are pairs $(X, \mathcal{O}_X^{\bullet})$ where X is a topological space and $\mathcal{O}_X^{\bullet} \in SCR(X)$. Then dRgSp^{loc} will then be the nonfull ∞ -subcategory where $(X, \pi_0(X^{\bullet}))$ is a locally ringed space.

Definition 2.7. The ∞ -category of derived schemes is the full subcategory of dRgSp^{loc} consisting of objects $(X, \mathcal{O}_X^{\bullet})$ s.t.

- (1) The truncation $(X, \pi_0(X^{\bullet}))$ is a scheme.
- (2) $\forall i$, the sheaf of $\pi_0(\mathcal{O}_X^{\bullet})$ -modules $\pi_i(X^{\bullet})$ is quasi-coherent.

Example 2. With this notion of derived scheme, we see that after Dold-Kan, the corresponding \mathcal{O}_X^{\bullet} for $\Bbbk \otimes_{\Bbbk[x]}^L \Bbbk$ will be the dga $(\Lambda(\Bbbk[1]) \otimes \Bbbk, 0)$. Under Dold-Kan homotopy groups correspond to homology and thus

$$\pi_0(\mathcal{O}_X^{\bullet}) = H^0(\Lambda(\Bbbk[1]) \otimes \Bbbk) = \Bbbk, \quad \pi_1(\mathcal{O}_X^{\bullet}) = H^1(\Lambda(\Bbbk[1]) \otimes \Bbbk) = \Bbbk, \quad \pi_i(\mathcal{O}_X^{\bullet}) = 0 \ \forall i > 1$$

Thus we see that the classical scheme (Spec \mathbb{k}, \mathbb{k}) does not detect the higher homotopy $\pi_1(\mathcal{O}_X^{\bullet}) = \mathbb{k}$.

2.2 Structure Sheaf of A^{\bullet}

For the purposes of having a reference, for k characteristic 0, it turns out we can further replace $\operatorname{cdga}_{k}^{\geq 0}$ with the category of connective $E_{\infty} k$ -algebras (k-algebras with a commutative and associative multiplication up to coherent homotopy), up to quasi-isomorphism. This model (spectral algebraic geometry) has the following theorem

Proposition (Prop 1.1.4.3 in SAG). Let A^{\bullet} be an E_{∞} ring. Then \exists a sheaf of E_{∞} rings $\mathscr{O}_{A^{\bullet}}$ on the topological space Spec $\pi_0(A^{\bullet})$ and a morphism $\phi : A^{\bullet} \to \mathscr{O}_{A^{\bullet}}(\operatorname{Spec} \pi_0(A^{\bullet}))$ which satisfies the following conditions

- (a) $\forall x \in \pi_0(A^{\bullet}) = R$ consider the distinguished open U_x . Then the composition map $A^{\bullet} \xrightarrow{\phi} \mathscr{O}_{A^{\bullet}}(\operatorname{Spec} R) \to \mathscr{O}_{A^{\bullet}}(U_x)$ induces an equivalence of E_{∞} rings $A^{\bullet}[x^{-1}] \to \mathscr{O}_{A^{\bullet}}(U_x)$.
- (b) Taking π_0 of ϕ , the canonical map

 $R = \pi_0(A^{\bullet}) \to \pi_0(\mathscr{O}_{A^{\bullet}}(\operatorname{Spec} R)) \to (\pi_0 \mathscr{O}_{A^{\bullet}})(\operatorname{Spec} R)$

is an isomorphism and thus $\pi_0(\mathscr{O}_{A^{\bullet}}) \cong \mathscr{O}_{\operatorname{Spec} R}$.

Theorem (Thrm 7.5.0.6 in HA). Given an E_{∞} ring A^{\bullet} and an étale morphism of commutative rings $\pi_0(A^{\bullet}) \to B$, there exists an E_{∞} ring B^{\bullet} (unique up to equivalence) and an étale map of E_{∞} rings $f: A^{\bullet} \to B^{\bullet}$ and an isomorphism of $\pi_0(A^{\bullet})$ -algebras $\pi_0(B^{\bullet}) \cong B$.

Remark. Applying Thrm above to $\pi_0(A^{\bullet}) \to \pi_0(A^{\bullet})[x^{-1}]$ (which is étale as geometrically corresponds to the open immersion $U_x \hookrightarrow \operatorname{Spec} R$) in Proposition above, this produces our E_{∞} ring $A^{\bullet}[x^{-1}]$.

Therefore, any SCR A^{\bullet} naturally gives rise to a derived scheme (Spec $\pi_0(A^{\bullet}), \mathscr{O}_{A^{\bullet}}$) in the above sense.

Example 3. Concretely, given a cdga A and $f \in H^0(A)$, we have that

$$\mathscr{O}_A(U_f) = A[\widetilde{f}^{-1}]$$

where $\tilde{f} \in A_0$ is any lift of f (Assume you know how to localize a cdga). Different choices of lifts give different algebras, but they are all quasi-isomorphic.